7. Vectors

• Let a1 \rightarrow , a2 \rightarrow , a3 \rightarrow , ..., an \rightarrow be *n* vectors. Let the linear combination of these vectors be denoted by L \rightarrow . Then:

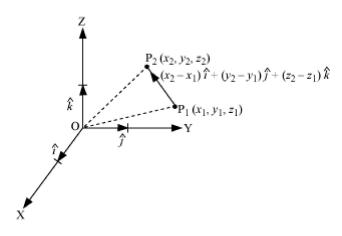
$$L \rightarrow = x1 \text{ a}1 \rightarrow +x2 \text{ a}2 \rightarrow +x3 \text{ a}3 \rightarrow, ...+xn \text{ an} \rightarrow, \text{ where } x1, x2, x3, ..., xn \in \mathbb{R}$$

- If $x1 \ a1 \rightarrow +x2 \ a2 \rightarrow +x3 \ a3 \rightarrow$, ...+xn an $\rightarrow =0$ such that not all x1, x2, x3, ..., xn \in R are zero, then it can be said that $a1 \rightarrow$, $a2 \rightarrow$, $a3 \rightarrow$, ..., an \rightarrow are linearly dependent vectors.
- If x1 a1 \rightarrow +x2 a2 \rightarrow +x3 a3 \rightarrow , ...+xn an \rightarrow =0 \Rightarrow a1 \rightarrow = a2 \rightarrow =a3 \rightarrow ... an \rightarrow =0, then a1 \rightarrow , a2 \rightarrow , a3 \rightarrow , ..., an \rightarrow are linearly independent vectors.
- Let a→, b→ be two vectors and there exist a scalar x∈R such that a→=x b→. Then we can say that the
 two vectors a→, b→ are collinear.
- Let a1 \rightarrow , a2 \rightarrow , a3 \rightarrow be three vectors and there exist three scalars x1, x2, x3 \in R, not all zero such that x1 a1 \rightarrow +x2 a2 \rightarrow +x3 a3 \rightarrow =0, where x_1 + x_2 + x_3 = 0. Then we can say that the three vectors a1 \rightarrow , a2 \rightarrow ,a3 \rightarrow are collinear.
- Let A, B, C be three collinear points. Then each pair of the vectors AB→, BC→; AB→,AC;→ and BC→, AC→ is a pair of collinear vectors. Thus, to check the collinearity of three points, we can check the collinearity of any two vectors obtained with the help of three points.
- Three points with position vectors $a \rightarrow$, $b \rightarrow$, $c \rightarrow$ are collinear, only if there exist three scalars x, y, z, not all zero simultaneously such that $xa \rightarrow +yb \rightarrow +zc \rightarrow =0 \rightarrow$, together with x+y+z=0.
- Let a1 \rightarrow , a2 \rightarrow , a3 \rightarrow , a4 \rightarrow be three vectors and there exist three scalars x1, x2, x3, x4 \in R, not all zero such that x1 a1 \rightarrow +x2 a2 \rightarrow +x3 a3 \rightarrow +x4 a4 \rightarrow =0, where x_1 + x_2 + x_3 + x_4 = 0. Then we say that the three vectors a1 \rightarrow , a2 \rightarrow , a3 \rightarrow , a4 \rightarrow are coplanar.

Vector Joining Two Points

The vector joining two points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$, represented as $\overline{P_1P_2}$, is calculated as

$$\overrightarrow{P_1P_2} = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}$$



The magnitude of $\overline{P_1P_2}$ is given by $\left|\overline{P_1P_2}\right| = \sqrt{\left(x_2 - x_1\right)^2 + \left(y_2 - y_1\right)^2 + \left(z_2 - z_1\right)^2}$

Section Formula

If point R (position vector \vec{r}) lies on the vector \vec{PQ} joining two points P (position vector \vec{a}) and Q (position vector \vec{b}) such that R divides \vec{PQ} in the ratio m: $n \left[i.e. \frac{\vec{PR}}{\vec{RQ}} = \frac{m}{n} \right]$

Internally, then
$$\vec{r} = \frac{m\vec{b} + n\vec{a}}{m+n}$$

Externally, then
$$\vec{r} = \frac{m\vec{b} - n\vec{a}}{m - n}$$

• Scalar Triple Product

$$a \rightarrow b \rightarrow c = a1a2a3b1b2b3c1c2c3$$

The scalar triple product, $a \rightarrow b \rightarrow c \rightarrow c$ can be denoted by $a \rightarrow b \rightarrow c \rightarrow c$

Remarks:

1.
$$a \rightarrow b \rightarrow c \rightarrow = b \rightarrow c \rightarrow a \rightarrow = c \rightarrow a \rightarrow b$$

2.
$$a \rightarrow b \rightarrow c \rightarrow =-b \rightarrow a \rightarrow c \rightarrow =-a \rightarrow c \rightarrow b \rightarrow$$

$$3. \ a \rightarrow +b \rightarrow \quad c \rightarrow \quad d \rightarrow = a \rightarrow \quad c \rightarrow \quad d \rightarrow +b \rightarrow \quad c \rightarrow \quad$$

4. $a \rightarrow b \rightarrow c \rightarrow = 0$ if $a \rightarrow = b \rightarrow or b \rightarrow = c \rightarrow or c \rightarrow = a \rightarrow or$ at least one of the vector is a null vector.

- 5. Three vectors $a \rightarrow$, $b \rightarrow$, $c \rightarrow$ are coplanar if and only if $a \rightarrow b \rightarrow c \rightarrow 0$.
- 6. la \rightarrow mb \rightarrow nc \rightarrow =lmna \rightarrow b \rightarrow c \rightarrow , where *l*, *m* and *n* are scalars.
- If $a \rightarrow$, $b \rightarrow$, $c \rightarrow$ represents three adjacent edges of a tetrahedron, then its volume V is given by $V=16a \rightarrow b \rightarrow c \rightarrow$.
- The vector product of $a \rightarrow$ with $b \rightarrow \times c \rightarrow$ is the vector triple product of the vectors $a \rightarrow$, $b \rightarrow$, $c \rightarrow$ and is defined by $a \rightarrow \times b \rightarrow \times c \rightarrow$. This is vector in the plane of $b \rightarrow$ and $c \rightarrow$ and perpendicular to $a \rightarrow$.

$$a \rightarrow \times b \rightarrow \times c \rightarrow = a \rightarrow \cdot c \rightarrow b \rightarrow - a \rightarrow \cdot b \rightarrow c \rightarrow .$$

- If the vectors $a \rightarrow$, $b \rightarrow$, $c \rightarrow$ are mutually perpendicular i.e., $a \rightarrow c \rightarrow =0$, $a \rightarrow b \rightarrow =0$, $b \rightarrow c \rightarrow =0$, then $a \rightarrow b \rightarrow c \rightarrow =0$.
- If the vectors $a \rightarrow$, $b \rightarrow$, $c \rightarrow$ are coplanar then $a \rightarrow \times b \rightarrow \times c \rightarrow =0$.
- Let a→, b→, c→ and d→ be four vectors then scalar product of these vectors is defined as
 a→× b→· c→× d→.

$$a \rightarrow \times b \rightarrow \cdot c \rightarrow \times d \rightarrow = a \rightarrow \cdot c \rightarrow b \rightarrow \cdot d \rightarrow - a \rightarrow \cdot d \rightarrow \cdot b \rightarrow \cdot c \rightarrow = a \rightarrow \cdot c \rightarrow a \rightarrow \cdot d \rightarrow b \rightarrow \cdot c \rightarrow b \rightarrow \cdot d \rightarrow - a \rightarrow - a \rightarrow \cdot d \rightarrow - a \rightarrow -$$

• Let $a \rightarrow$, $b \rightarrow$, $c \rightarrow$ and $d \rightarrow$ be four vectors then vector product of these vectors is defined as $a \rightarrow \times b \rightarrow \times c \rightarrow \times d \rightarrow$.

$$a \rightarrow \times b \rightarrow \times c \rightarrow \times d \rightarrow = a \rightarrow \times b \rightarrow \cdot d \rightarrow c \rightarrow - a \rightarrow \times b \rightarrow \cdot c \rightarrow d \rightarrow a \rightarrow \times b \rightarrow \times c \rightarrow \times d \rightarrow = a \rightarrow b \rightarrow d \rightarrow c \rightarrow - a \rightarrow b \rightarrow c \rightarrow d \rightarrow c \rightarrow - a \rightarrow b \rightarrow c \rightarrow d \rightarrow c \rightarrow - a \rightarrow b \rightarrow c \rightarrow d \rightarrow c \rightarrow - a \rightarrow - a$$

